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ABSTRACT: Both exotic and native species have been shown to evolve
in response to invasions, yet the impacts of rapidly evolving inter-
actions between novel species pairs have been largely ignored in
studies of invasive species spread. Here, I use a mathematical model
of an interacting invasive predator and its native prey to determine
when and how evolutionary lability in one or both species might
impact the dynamics of the invader’s spatial advance. The model
shows that evolutionarily labile invaders continually evolve better
adapted phenotypes along the moving invasion front, offering an
explanation for accelerating spread and spatial phenotype clines fol-
lowing invasion. I then analytically derive a formula to estimate the
relative change in spread rate due to evolution. Using parameter
estimates from the literature, this formula shows that moderate her-
itabilities and selection strengths are sufficient to account for changes
in spread rates observed in historical and ongoing invasions. Evo-
lutionarily labile native species can slow invader spread when genes
flow from native populations with exposure to the invader into native
populations ahead of the invasion front. This outcome is more likely
in systems with highly diffuse native dispersal, net directional move-
ment of natives toward the invasion front, or human inoculation of
uninvaded native populations.

Keywords: adaptation, exotic species, lag phase, range expansion,
victim-exploiter interactions.

Introduction

As recently as 1996, a prominent textbook in invasion
biology stated, “Invasions are fast, evolution is slow” (Wil-
liamson 1996, p. 168). Evolution has since gained recog-
nition for its significance in exotic species invasions (Cox
2004) and is most often invoked for its role in the colo-
nization (Lee and Gelembiuk 2008), establishment (Blos-
sey and Notzold 1995; Ellstrand and Schierenbeck 2000),
eventual extent (Sakai et al. 2001; Dietz and Edwards
2006), and long-term impacts (Mooney and Cleland 2001;
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Strauss et al. 2006) of invasive species. The role of evo-
lution in the spread phase of invasions has received less
consideration. Spatial spread is a transient, rapidly un-
folding process (Williamson 1996), and the importance of
rapid evolution on timescales relevant to population dy-
namics has only recently gained widespread attention and
acceptance (Thompson 1998; Pelletier et al. 2009). None-
theless, recent work has begun to demonstrate the im-
portance of evolutionary processes in the spread phase of
exotic species invasions.

Rates of spatial spread are determined by a demographic
and a dispersal component (Skellam 1951), so evolution-
ary changes in either could potentially alter the dynamics
of spread (Crooks and Soule 1999). A number of theo-
retical and empirical studies have shown that evolution of
dispersal ability can (Travis and Dytham 2002; Phillips et
al. 2008) and has (Simmons and Thomas 2004; Phillips
et al. 2006; Hughes et al. 2007) altered spatial spread dy-
namics in a few decades or less. Likewise, a few studies
have acknowledged that the demographic component of
spread may be sensitive to evolutionary forces, but these
studies have mostly focused on the special case of spread
along an environmental gradient (Garcia-Ramos and Rod-
riguez 2002; Butin et al. 2005; Filin et al. 2008).

At the same time, the impacts of evolutionarily labile
species interactions on spatial spread dynamics are un-
known. Species interactions strongly influence invader de-
mography and spatial spread (Shigesada and Kawasaki
1997; Lockwood et al. 2007) and often evolve following
exotic species invasions. Examples of invader evolution
following introduction are diverse, including the expan-
sion of host use (Cox 2004), increased disease virulence
(Fenner 1959), altered defense strategies against exploiters
(Rogers and Siemann 2004), and both character displace-
ment (King 1991) and increased competitive ability (Blos-
sey and Notzold 1995). An equally impressive bestiary of
evolutionarily labile native species has been documented.
Examples include insects evolving better host exploitation
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(Carroll et al. 2005), marine invertebrates gaining bol-
stered defenses against predators (Freeman and Byers
2006), vertebrate predators acquiring genetically based
avoidance of toxic prey (Phillips and Shine 2006), hosts
acquiring heightened defenses against pathogens (Marshall
and Fenner 1958), and grasses evolving greater competitive
ability (Leger 2008).

These and other examples of evolution by invasive and
native species engaged in novel interactions have all oc-
curred on timescales coincident with the process of in-
vasion itself. As such, a great potential exists for evolu-
tionarily labile species interactions to affect spatial spread,
and understanding these dynamics is crucial for effective
management (Epanchin-Niell and Hastings 2010). Before
real-world applications can be realized, more basic ques-
tions must be answered. These include (1) how the in-
tensification or abatement of interactions due to evolution
may affect the dynamics of an advancing wavefront and
(2) what characteristics predispose a species to these ef-
fects. Additionally, it is clear from empirical work that
interactions between invasive and native species evolve
quickly, but the question remains (3) whether realistic lev-
els of selection strength and genetic variance allow for
impacts on timescales relevant to spatial spread.

To answer these questions, I followed a long tradition
of theoretical work on spread (Hastings et al. 2005) by
analyzing a standard reaction-diffusion model with the
added complexities of both demographic and phenotypic
dynamics of an invasive and a native species. Similar mod-
els have been applied to study range limits on environ-
mental gradients (Case and Taper 2000; Case et al. 2005;
Goldberg and Lande 2007), but they have focused on equi-
librium dynamics and are seldom applied to the transient
dynamics of spread (but see Garcia-Ramos and Rodriguez
2002; Filin et al. 2008). The model here is simple in the
sense that it applies to a single, environmentally homo-
geneous spatial dimension, but importantly, it incorpo-
rates the interaction between local adaptation and gene
flow, which is often antagonistic and relevant to ecology
(Kirkpatrick and Barton 1997; Garcia-Ramos and Rodri-
guez 2002; Forde et al. 2007). Using numerical solutions
of these models, I show that rates of spatial spread may
be sensitive to the evolution of invaders, natives, or both.
I then provide an analytical approximation for the spread
rate of an evolving invader and qualitative requirements
necessary for native evolution to impact invader spread.
In addition to detailing the effects of evolutionary lability
on spread in this model, I analytically derive a more gen-
eral formula for the relative change in spread rate due to
invader evolution. I then assess the potential magnitude
of invader evolution for spread in natural systems by ap-
plying observed estimates of linear selection gradients
(Kingsolver et al. 2001) and demographic parameters from

well-known invasions to the newly derived formula for
relative change in spread.

Model
Verbal Description

The model features two species: a native prey and an in-
vasive predator that specializes on it. The model also in-
cludes a quantitative trait in each species that is relevant
to their interaction, such as bill depth and seed size in
crossbills and pines (Benkman 1999). Before the invader’s
introduction, the native occupies a one-dimensional land-
scape (e.g., a coastline) at its carrying capacity everywhere
along the landscape. Individuals continually follow ran-
dom walks about the landscape such that dispersal is char-
acterized by a diffusion process. Births and deaths also
occur continually; both species therefore experience over-
lapping generations.

Births and deaths enter the model as contributions to
or detractions from per-capita, per-generation population
growth rates, or Malthusian fitnesses, for each species and
depend on three independent fitness components. First, a
stabilizing selection fitness component penalizes fitness if
an individual’s phenotype is so extreme as to interfere with
aspects of its lifestyle external to the interaction (e.g., ex-
cessively large cane toads are plagued by arthritis; Brown
et al. 2007). Second, a within-species fitness component
accounts for births and deaths that occur independent
from the invader-native interaction. I assume a Lotka-
Volterra predator-prey relationship such that the preda-
tor’s constant death rate and the prey’s logistic birth rate
represent the within-species fitness components. Third, a
between-species fitness component accounts for births and
deaths due to the interaction. Predators with more suitable
phenotypes for catching prey contribute more to the pop-
ulation’s birth rate, and prey with phenotypes better suited
for predator evasion contribute less to their population’s
death rate. The suitability of a predator with a given phe-
notype for capturing a prey with a given phenotype is
assessed using a function for interaction strength. I assume
that predators are best able to capture and consume prey
when their phenotypes match, as in the case of crossbills
and pine seeds (Benkman 1999). Other interaction func-
tions exist (e.g., Nuismer et al. 2007), but their distinction
is more relevant to long-term equilibrium dynamics than
it is to the transient dynamics of spread.

Mathematical Description of the Modeling Framework

The scenario described heuristically above of two inter-
acting species inhabiting a one-dimensional landscape is
commonly modeled using a system of reaction-diffusion
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equations. A careful derivation of these equations in an
ecological setting is provided by Okubo and Levin (2001),
and their application to invasive species is detailed by Shi-
gesada and Kawasaki (1997). Here, such a model accounts
for invader and native population sizes I(t,x) and
N(t, x) specified continuously for all points in time ¢ and
space x (the notation for which is now omitted for brevity).
The equations governing each species’ population dynam-
ics are

ol ¢} 0’1 -
E‘ = ?ﬁ + myl, (1a)
ON 020°N  _
o= 7N o TN, (1b)

where o7 is the per-generation mean squared displacement
of species i (hereafter dispersal coefficient) and mt, x) is
its mean Malthusian fitness averaged across all phenotypes
z{t, x). Mean Malthusian fitness represents the average
per-capita, per-generation population growth rate of in-
dividuals at a given time ¢ in a given location x. It is
therefore dynamic, and its dependencies on other variables
and parameters are described in more detail below.

The interaction traits z; of each species are quantitative
characters that impact births and deaths but do not affect
movement. Biologically, this means that this model is con-
cerned with traits such as bill depth and seed size (Benk-
man 1999) or claw size and shell thickness (Freeman and
Byers 2006) as opposed to searching or avoidance behavior.
Mathematically, this means that the dispersal coefficient
of each species remains unchanged by the interaction. A
reaction-diffusion model for traits such as these was pre-
sented by Pease et al. (1989), developed further by Kirk-
patrick and Barton (1997), and has since been applied to
interacting species (Case and Taper 2000) and spatial
spread of a single species (Garcia-Ramos and Rodriguez
2002). This model makes the same assumptions about life
history and dispersal as ecological reaction-diffusion equa-
tions but goes further and acknowledges a trait z; with
normal distribution ¢,z;), dynamic mean z, and fixed
phenotypic variance V; ;. Such a formulation is consistent
with the infinitesimal model of quantitative genetics,
which assumes that phenotypes z; are determined by iden-
tically small additive effects from a large number of un-
linked loci and a normally distributed source of environ-
mental variation (Bulmer 1980). According to this
description, the system of equations for interaction trait
dynamics in time and space is

dz, 070’z dlnlaz am

- _1_21 012__1_,_ AI__I’ (2a)
ot 2 dx 0x 0x "0z,

az 050’z dlnNoz am

— =t —+ Vi, (@b
ot 2 dx ox Oox 0z

Interaction Evolution and Spatial Spread E39

where V, ; is additive genetic variance (derived in the ap-
pendix of Pease et al. 1989). In words, the phenotypic
composition of a population inhabiting point x on the
landscape at time ¢ changes in response to two forces: (1)
gene flow from nearby populations (first and second terms
of the right-hand side) and (2) selection that occurs locally
within that population (third term of the right-hand side).
The first gene flow term accounts for diffusive rearrange-
ment of mean phenotypes, and the second weighs that
rearrangement according to uneven population sizes
across space. Based on the breeder’s equation (Lande
1976), the local selection term is an approximation of the
evolutionary dynamics of a quantitative trait rather than
an exact model. Even so, it accurately captures evolution-
ary change in trait means in the face of strong selection
(Turelli and Barton 1994).

Tailoring the Model to Invasive Predators and Native Prey

As described thus far, the model in equations (1) and (2)
could apply to any type of interaction. From here on,
however, I restrict my analysis to the case of an invasive
predator and a native prey species with Lotka-Volterra
dynamics. Invasive predators are of particular interest be-
cause they tend to be some of the most disruptive invaders
(Schoener and Spiller 1999; Blackburn et al. 2004; Green-
lees et al. 2006; Pangle et al. 2007) and because victim-
exploiter interactions are especially prone to selection and
coevolution (Abrams 2000).

Mathematically, species interactions enter the model in
equations (1) and (2) through the specification of mean
Malthusian fitness m,. I assume that stabilizing selection
and selection from within- and between-species interac-
tions act on fitness independently. It follows that mean
Malthusian fitness is equal to the sum

m; = m + M ithin T M petween ®3)

i, stab

of the stabilizing, within-species, and between-species fit-
ness component means (Gavrilets 1997).

The model for stabilizing selection assumes that there
is an intermediate, optimal phenotype 6, conferring max-
imal fitness and that values too inadequate or too far in
excess of that optimum suffer a fitness cost. Selection for
these intermediate, optimal phenotypes has nothing to do
with interaction between the model’s focal species. Instead,
it acts to constrain the range of phenotypes accessible to
evolution and accounts for fitness trade-offs that may se-
lect against extreme phenotypes. These trade-offs could be
related to energetic demands, the ability to find or attract
mates, or vulnerability in interactions with other species.
Accordingly, the stabilizing selection fitness component
mean for each species is defined mathematically as
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mi,stab = f{exp [—kiz, — 9,‘)2] — }o(z)dz,, @)

where ¢(z;) is a normally distributed phenotype distri-
bution with mean z; and variance V,, ;. Henceforth, 0, =
0 and 6, = 0 for simplicity.

Within-species interactions in the model are consistent
with the basic Lotka-Volterra predator-prey model. In-
vasive predators die at a density-independent rate d, and
native prey display logistic growth at rate r up to a local
carrying capacity K. Hence, the within-species fitness com-
ponent means are M i, = —d and My p. = 11—
NIK).

The between-species fitness component is also consis-
tent with a Lotka-Volterra predator-prey formulation but
includes an additional coefficient S that weakens the in-
teraction if predators of phenotype z, are ill-suited for
capturing prey of phenotype z,. Modifying species inter-
actions in this way for quantitative interaction traits such
as z; and z,, has its roots in models of competitive inter-
actions (MacArthur and Levins 1967; Bulmer 1974; Slatkin
1980; Taper and Case 1985), but the same idea can be
applied to predator-prey interactions (Abrams 2001). I
define S consistent with the phenotype matching model
of species interaction strength, wherein the interaction is
intensified by closer correspondence between trait values.
Examples in nature include crossbills with appropriately
sized beaks being the most effective foragers on locally
plentiful seed sizes (Benkman 1999) and cuckoos’ success
as nest parasites being optimized when egg coloration pat-
terns match those of their hosts (Davies and Brooke 1989).
Mathematically, the interaction strength coefficient
S(¢,, ¢) depends on the phenotype distribution ¢, of each
species and takes the mathematical form

S= jf{exp [—alz, — ZN)Z]¢1(Zl)dzl}¢N(ZN)dZN> 5)

where « is the species interaction selection strength. Large
values of o correspond to a highly specialized interaction
where predators feed successfully only on like prey,
whereas small values of « result in a diffuse interaction
where phenotype values are largely irrelevant to predation
success. With the interaction strength coefficient in hand,
the between-species fitness component means are then

abNs, (6a)

ml, between —

—als, (6b)

mN, between =

with a the attack rate and b the efficiency with which
predators convert prey deaths into predator births.

Parameters and Scaling

Numerical solutions calculated equations (4) and (5) di-
rectly. However, making approximations of m, ,, and S
was necessary to simplify the range of parameter combi-
nations for numerical evaluation and to proceed with an-
alytical work. Motivated by this, I simplified the expo-
nential kernel in each expression by performing a Taylor
approximation about z; = 0, in equation (4) and about
z,— zy = 0 in equation (5), resulting in quadratic ex-
pressions. Because the model assumes that the phenotype
distribution ¢, of each species is normal with mean z; and
variance V,, ;, I was able to calculate the integrals in equa-
tions (4) and (5) exactly to obtain the approximations

M = —k [ Vo, + (2, — 0)%], (7a)

Sc1—a[V,,;+ Voxt (2y— 2)°]. (7b)

Inserting these approximations into equations (3) and (6)
yields a simplified version of the model suitable for math-
ematical analysis.

One use of the simplified model is reducing the number
of parameters. Predator-prey dynamics are complicated
enough without the addition of evolutionary dynamics, so
it is desirable to simplify the relationships among param-
eters that account for the model’s range of dynamic be-
haviors. In the context of spatial spread, it is well known
that behavior at the invasion front, where invaders are at
low densities and natives in greater abundance, is key. It
follows that one of the most important characteristics of
predator-prey dynamics for spatial spread is how rapidly
invasive predators at low density deplete native prey. Given
values of all the other parameters, there is an attack rate

2(d + kVy)

- 8
bSN,, ®)

a=
that optimizes equilibrium predator densities along a spec-
trum of more or less voracious attack rates that lead to
lower or higher equilibrium prey densities (Roughgarden
1979; Nip = K1 — k\V, /1) is the equilibrium prey pop-
ulation size in the absence of predation). Predator-prey
dynamics can then be characterized simply by the degree
to which a exceeds or falls short of 4, providing a bench-
mark for the model’s ecological dynamics regardless of the
values of other parameters on the right-hand side of equa-
tion (8).

Another use of the simplified model is establishing bi-
ologically informative scales for the model’s variables.
Equilibrium population sizes are a natural scale on which
to interpret the values of I and N. It is less clear what t
constitutes a short amount of time, what x is a far distance,
or what difference |z, — z,| between native and invader
phenotype means is of any consequence. Recalling that
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disparity between invader and native phenotypes leads to
invader failure in this model, a quantity of special interest
in phenotypic units is the threshold difference D between
invader and native phenotypes beyond which the invader’s
growth rate falls below 0. Plugging equations (6) and (7)
into equation (3), equating m, with 0, and solving for
|z, — zy| reveal that

1 d+kV,,
Dx\-—-—=2—v, -
o  abN«a ’

Ve ©)

Although it is not strictly true given the complications of
spatial mixing, when |z, — z,| > D is true at a given lo-
cation, the invasion generally will not proceed past that
point, and otherwise it will. This quantity naturally gives
rise to a quantity in time units of special interest: the
amount of time T it takes for a native to evolve to z, such
that |z, — z,| > D. In the absence of gene flow and invader
evolution, native evolution is governed by the reduced
version of equation (2b), dzy/dt = V, (9my/dz,). This
equation can then be solved to find that

1 0—D
T~——In|l + =————|,
B, zy — Qu/By

(10)
where the composite parameters are defined as Q, =
—ZK,NafCEaZ'I and B, = 2V, yky — ZK‘Na}CEoz. Finally, a re-
lated spatial quantity X can be defined as
X= T, 11)
where c is some estimate of the invader’s spread rate. The
quantity X corresponds to the distance spread by the in-
vader in the time it takes the native to mount an adaptive
response. This is useful to keep in mind because if X far
exceeds the potential range size of the invader, then native
evolution is unlikely to have much of an impact on spread
dynamics. However, if X is small compared with the in-
vader’s potential range size, then at least some natives will
adapt to combat invaders and potentially slow spread.

Model Analysis

I made analytical approximations wherever possible. How-
ever, exact solutions of the model are analytically intrac-
table. I therefore verified the analytical results with nu-
merical solutions of the full model and also used those
solutions to address topics that were otherwise inacces-
sible. Details of the numerical implementation of the
model are discussed in appendix A.

Interaction Evolution and Spatial Spread FE41

Results

Here I present the results of examining four general cases
of the model where neither, either, or both the invader
and native are evolutionarily labile. In the two cases where
the native is not evolutionarily labile (hereafter static), I
derived an analytical approximation for the invader’s as-
ymptotic spread rate that accurately represents the tran-
sient spread rate of the evolving invader when viewed as
a function of a dynamically evolving phenotype under this
model. Given this result, I then derived a more general
estimate of transient changes in spread due to invader
evolution and quantified that estimate with empirically
estimated parameter values from the literature. Results
about evolutionary consequences of ecologically distinct
invaders are also shown. The derivation of biologically
informative variable scales is instructive about native prop-
erties that increase their potential for slowing spread, and
numerical solutions of the model illustrate qualitative re-
sults about the dispersal characteristics of native species
required for slowing invader spread.

Case 1: Static Invader, Static Native

A well-known property of diffusion-based spatial spread
models is that the asymptotic spread rate ¢ equals
(2m(0)0*)"?, where m(0) is population growth rate at low
abundance (Skellam 1951). Using the approximations in
equation (7), the implication for this model is that in the
absence of evolutionary change, invader spread should
proceed at a constant rate

cRN2A—k [V, + (2, — 0] — d+ abSNJo.  (12)
Even though phenotypes do not evolve in this case, the
degree of phenotype matching between invaders and na-
tives at the onset of invasion has a perceptible impact on
spread through its effect on S (see eq. [7b]). If the invader
phenotype is within D phenotypic units of the native phe-
notype, spread proceeds; otherwise, the invasion fails. A
good match between invader and native phenotypes results
in fast asymptotic spread of the invader.

Case 2: Labile Invader, Static Native

In the case where an invasive species has the capacity for
evolutionary change and a native species does not, the
invader’s phenotype dynamics at low density on the in-
vasion front are approximated by the spatially implicit
model (3/01)z(t, x — ct) = V, (dm,/dz) (app. B). Invader
phenotypes at the invasion front thus follow the trajectory
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zZ(t, x — ct) = (0 - %) exp (—Bt) + %,

1 1

(13)

where Q; = 2V, k0 + ZK)IabI(]IFaEN and B = 2V, k, +
2V, ,abI(]IFa. This approximation shows that mean invader
phenotype evolves continually at rate B at the invasion
front until a fitness-maximizing phenotype of Q,/B is at-
tained (black line in fig. 1b). Numerical results validate
this approximation (correspondence between lines and cir-
cles in left column of fig. 2).

A result of invader evolution at the invasion front is an
increase in spread rate over time (front progresses farther
in fig. 1¢ than in fig. 1a in the same amount of time). An
approximate solution of spread rate as a function of time
during the transient, evolutionarily sensitive phase of
spread can be attained by plugging the solution for invader
phenotype at the invasion front from equation (13) into
the asymptotic spread rate approximation in equation (12)
via equation (7b). Numerical solutions of the full model
show that this approximation provides a useful caricature
of the transient spread dynamics of evolutionarily labile
invaders (correspondence between lines and circles in right
column of fig. 2). Whether calculated numerically or ap-
proximated analytically, the dynamic spread rate c.,,(#) of
an evolutionarily labile invader can be compared with the
fixed asymptotic spread rate ¢ parameterized with phe-
notypes from the onset of invasion (z;, = 0, z, = 0) to
study the effects of evolutionary lability on spread
dynamics.

The response of ¢, (f)/c to the manipulation of key
parameter values provides insight into the effects of in-
vader evolution on transient spread dynamics. Greater val-
ues of genetic variance V;, and interaction selection
strength o accelerate both evolution toward the optimal
phenotype at the invasion front (fig. 24, 2b) and the ad-
vance of the front itself (fig. 2e, 2f). High genetic variation
and a highly specialized interaction are thus two factors
that predispose invaders to evolutionary impacts on
spread. On the other hand, stabilizing selection k, has little
effect on accelerating either phenotype evolution or spread
but does influence the phenotype and asymptotic spread
rate that can ultimately be attained (fig. 2¢, 2¢). In fact, if
stabilizing selection is strong enough, invader evolution
and spread acceleration are stifled altogether. Greater at-
tack rates a also accelerate spread more rapidly when evo-
lution acts, but this enhanced transient acceleration comes
at the cost of a reduced asymptotic spread rate (fig. 24,
2h). This reduction in asymptotic spread results from sta-
bilizing selection acting on the more extreme phenotypes
produced when a > a.

Invader evolution impacts phenotype dynamics not only
at the invasion front but also in its wake. One novel pattern

[\
(=
[=]

Invader
Abundance
1(t,2-ct)

Invader
Phenotype
Zr(t,z-ct)

Invader
Abundance
I{t,x-ct)

Figure 1: Progression of invasion front when invader is evolution-
arily static (a; V, , = 0) or labile (¢ V, , = (1/4)V,, ;). Invader evo-
lution at the invasion front (b; black vs. gray) accounts for the ac-
celeration in spread (c vs. a). For ease of visual interpretation, each
line from left to right in a and ¢ shows the invasion profile at suc-
cessive points in time and is drawn from the peak of the invasion
profile on the left to I = 0 in the uninvaded region on the right.
Wide (narrow) lines occur in increments of 10 (1) time units between
3 and 63 from left to right in a and c.

emerging here is the formation of invader phenotype clines
behind the invasion front (fig. 3). The general requirement
for this result is that selection pressures differ at and be-
hind the invasion front. At the invasion front, native prey
populations are consistently at their carrying capacity,
whereas populations behind the front become increasingly
depressed from invader exploitation over time. This dif-
ference in native population sizes at and behind the in-
vasion front results in differing selection pressures on in-
vader phenotypes there, because interaction strength
depends on native population size in equation (5). As a
result, higher predator attack rates a depress native pop-
ulations behind the invasion front more quickly and se-
verely, leading to steeper invader phenotype clines in the
wake of spread (cf. fig. 34, 3b).

Case 3: Static Invader, Labile Native

The temporal and spatial scales T and X defined in equa-
tions (10) and (11) provide insight into when it is possible
for native evolution to impact spread. As one example,
small 6 means that the invader and native are phenotyp-
ically very similar at the onset of invasion, so according
to equation (10), it will take a relatively long time for the
native to evolve a phenotype capable of reducing invader
population growth below 0. As another example, equation
(11) shows that if the invader spreads quickly (large ¢),
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Relative Change in Spread Rate coyo(t

Figure 2: Invader phenotype evolution at the invasion front (a—d) and relative change in spread rate over time (e—h) in response to changes
in invader additive genetic variance V, ; (4, e), interaction selection strength « (b, f), invader stabilizing selection strength k, (¢, g), and
attack rate a (d, h). Dashed lines and open circles are used for smaller parameter values, while solid lines and filled circles are used for
larger values. Lines come from the approximation in equations (12) and (13), and circles show the results of numerical solutions. Equation
(15) does not apply directly because its parameters do not vary with time; otherwise, it also agrees with the lines because it is a mathematically
equivalent restatement of equations (12) and (13). The spatial domain was of length |x, — x| = 120, and all other parameters are as in

table 1.

the potential range size of the invader must be very large
for there to be enough time for native evolution to be
relevant; otherwise, spread will be complete before natives
can make an adaptive response.

The ability of a native species to impact spread depends
not only on the quickness of its adaptive response and on
the eventual size of the invader’s range but also on the
native’s ability to relay genes from adapted populations
toward the invasion front. In the absence of human as-
sistance, the means by which invader-adapted native genes
could catch up to the invasion front is either by the native
dispersing more widely than the invader (o}, > o7; fig. 4)
or by the native having a directional bias, or advection,
in dispersal relative to the invader (fig. 5). Even if advec-
tion carries invader-adapted genes toward the front, native
dispersal must still be orders of magnitude greater than
the invader’s to have an impact on spread (dashed line in
fig. 6). If advection moves against the front, impacts on
spread are less likely and require that natives possess an
even greater dispersal advantage (solid line in fig. 6). Such
a directional bias was introduced into the model by adding

advective terms 6(dN/dx) and 6(9z,/dx) to the right-hand
sides of equations (1b) and (2b), respectively.

Case 4: Labile Invader, Labile Native

When both an invader and a native are evolutionarily
labile, invader impacts on spread dominate native impacts.
In case 3, where the native was evolutionarily labile and
the invader was not, the conditions under which the native
could relay invader-adapted genes to the invasion front
fast enough to impact spread were quite stringent. If the
invader were to spread even faster, it would be more dif-
ficult for the native to impact spread (i.e., the lines in fig.
6 would shift to the right). Numerical results show that
this is precisely what happens when an invader is evolu-
tionarily labile (fig. 7); it accelerates spread (fig. 7b), mak-
ing it even more difficult for invader-adapted native genes
to catch up to the front (fig. 7a). Thus, given similar
capacities for evolutionary lability (i.e., V; ;= V), the
impacts of invader evolution on spread are likely to dom-
inate impacts of native evolution.
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Figure 3: Spatial patterns in invader phenotype during spread. Lines
show the pattern of invader phenotypes across its range at successive
points in time (from t = 0.1 to 19.1 in increments of 1) from nu-
merical solutions. a and b show the different spatial patterns that
result from spread of invaders with different attack rates. These so-
lutions were obtained numerically on a spatial domain of length 100
over time 100, and all other parameters are as in table 1.

Beyond Interspecific Interactions

In case 2, in which the invader is evolutionarily labile but
the native is not, the result of invader evolution at the
invasion front and subsequent spread acceleration applies
more broadly than just to invader-native interactions. As
the invasion front moves, native populations just ahead
of the front present invaders with consistent native abun-
dances and phenotype means and thereby with consistent
invader population growth rates m, at the invasion front.
For the purpose of modeling spread, natives are therefore
static and factor into the invader’s spread rate via m, just
like anything else (Shigesada and Kawasaki 1997). Con-
sequently, the relative increase in spread rate c,,,(#)/c for
an invasive predator discussed in case 2 and shown in
figure 2 can be generalized to other evolving invaders with
the approximation

2
t 1 [om
Coa®) \/1+ i (_ﬂ_ﬁ)\{“t
m0)\dz,) ™

c

(14)

(app. C). To enhance its applicability to real invasions, the

approximation in equation (14) can be rewritten in terms
of more readily estimable parameters as

Cevnl(t) ~ \ 1+ -h B zt,
(0)G

(15)
c m

where narrow-sense heritability h* = V. /V,, 8 is the
standardized selection gradient, and G is generation time
(app. C). In general, this formula shows that greater ac-
celeration of spread due to invader evolution is expected
when baseline population growth #1,(0) is low, generation
time G is short, heritability 4* is high, or selection 8 is
strong. Of course, some of the parameters in equations
(14) and (15) may change as an invasive species spreads,
in which case they can be made functions of time. For
instance, in the full invader-native model, 3 decreases over
time as stabilizing selection reduces the strength of selec-
tion on the increasingly extreme phenotypes favored by
selection on predation success. Nonetheless, rather than
making accurate predictions, the purpose of this approx-
imation is to act as a tool for those who wish to make a
rough guess about the potential impact of invader evo-
lution on spread.

Quantitative Significance in Natural Populations

To get an idea of how great heritability and selection must
be to exert a meaningful impact on exotic species inva-
sions, I applied estimates of c,,()/c, m,(0), and G from
six invasions (app. D) to equation (15) and solved for the
values of #* and (8 that would be required to account for
observed levels of spread acceleration (fig. 8). This exercise
was not meant to attribute the dynamics of these invasions
to evolution but rather to determine whether invader evo-
lution could ever possibly generate increases in spread rate
similar to what has been observed in real invasions. To
provide a context for how strong selection gradients typ-
ically are in natural populations, in each panel of figure
8, I plotted the fiftieth, seventy-fifth, and ninety-fifth per-
centiles of the distribution of published selection gradients
compiled by Kingsolver et al. (2001). Using parameters
from these six invasions and equation (15), moderate her-
itabilities and selection gradients appear sufficient to pro-
duce spread acceleration comparable to that observed in
these invasions. Even though the year-to-year increases
observed in these invasions varied dramatically, from 2%
to 500%, variation among the heritabilities and selection
gradients necessary to account for these differences is rel-
atively small because of concomitant variation in gener-
ation times (fig. 8).

Although the analysis in figure 8 does not ascribe spread
dynamics of its six example invasions to evolution, it may
be possible to do so for invasions with both a record of
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Figure 4: Effect of relative dispersal ability o}/0; on mean native phenotype z,(t, x) as an invader spreads from left to right across an area
inhabited by an evolutionarily labile native (V, , = (1/2)V;, ). Insets show corresponding invader spread rates over time, with line thickness
and color indicating which spread rate trajectory corresponds to which panel (gray for a, black for b). Circles show mean phenotype at
the invasion front at different points in time, and wide (narrow) lines occur in increments of 100 (10) time units between 81 and 481 from
left to right in each panel. For ease of visual interpretation, each line shows mean phenotype from its minimum value on the left toward
the uninvaded side of the native’s range on the right. These solutions were obtained numerically on a spatial domain of length 10X over
time 107 to allow ample time for natives to mount an evolutionary response, and all other parameters are as in table 1.

range expansion over time and data on the spatial distri-
bution of phenotypes. Two invasions that may meet such
minimum data requirements are the myxoma virus and
cane toad invasions of Australia. In addition to the po-
tential for invader evolution to affect spread in these cases
(Fenner 1959; Phillips et al. 2010), they also display evi-
dence of native evolution in response to the invaders (Mar-
shall and Fenner 1958; Phillips and Shine 2006). Com-
parison of models with evolution and other plausible
mechanisms for observed spread dynamics in systems such
as these could be a fruitful line of future investigation.

Discussion

In this study, I used a mathematical model of interacting
invasive and native species to determine when and how
evolutionary lability in one or both species might impact
the dynamics of the invader’s spatial advance. Given suf-
ficient genetic variation and selection pressure, evolution
of traits relevant to the interaction can take place in either
species at the invasion front, impacting spread by way of
the invader’s reproductive success there. Enabled by gene
flow from past occupants of the front and spurred by
consistent selection pressures from uninvaded areas, in-
vaders may evolve faster at the invasion front than behind
it. In contrast, native evolution occurs in the wake of the
advancing front. Genetic material from these populations
must somehow catch up to the front to impact spread.
The range of possible impacts in these scenarios is sum-
marized in table 1.

Evolutionarily Labile Invader

One of the primary findings of this study is that when
conditions in uninvaded regions incite directional selec-
tion in invader phenotypes, invader populations at the
edge of a moving invasion front are exposed to consistently
strong selection pressures and show continual evolutionary
responses there. Behind the front, invaders evolve more
slowly if selection pressures change over time. Selection
on interaction traits may often change over time if an
invader effects changes in native abundance or the distri-
butions of native interaction traits, size, or age. In this
model, selection on the invasive predator’s interaction trait
weakens behind the invasion front because of prey deple-
tion, leading to the formation of a spatial cline (fig. 3).
Even so, this result about cline formation is more general
and applies to any trait for which selection is density de-
pendent or whose selection depends on time since invasion
(e.g., male aggression in Western bluebirds is most adap-
tive in newly colonized populations; Duckworth and Bad-
yaev 2007). Another case where this pattern may occur is
virulence evolution of emerging pathogens. Virulence is
often observed to peak soon after the onset of pathogen
emergence and then wane over time as susceptible hosts
are depleted and selection pressures change (Bolker et al.
2010). As an emerging pathogen spreads over space, which
may take place over hundreds of generations (app. E, avail-
able online), my results suggest that virulence would con-
tinually increase at the invasion front, where pathogens
encounter a never-ending supply of susceptible hosts, and
attenuate behind the front as susceptibles become
exhausted.

Another important finding is that the evolution of in-
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Figure 5: Effect of advective dispersal bias 6 on mean native phenotype z,(t, x) as an invader spreads from left to right across an area
inhabited by an evolutionarily labile native (V, , = (1/2)V;, ). Insets show corresponding invader spread rates over time, with line thickness
and color indicating which spread rate trajectory corresponds to which panel (gray for a, black for b). Circles show mean phenotype at
the invasion front at different points in time, and wide (narrow) lines occur in increments of 100 (10) time units between 85 and 485 from
left to right in each panel. For ease of visual interpretation, each line shows mean phenotype from its minimum value on the left toward
the uninvaded side of the native’s range on the right. These solutions were obtained numerically on a spatial domain of length 10X over
time 10T to allow ample time for natives to mount an evolutionary response, and all other parameters are as in table 1, except o =

0.01 and o3, = 100.

vader interaction traits can accelerate spread by increasing
invader population growth at the front over time. Con-
sistent with data from real invasions, accelerating spread
is ultimately a transient phenomenon (e.g., the house finch
invasion of North America; Veit and Lewis 1996) but may
persist for much of the duration of spread (e.g., geographic
spread of several pathogens; Mundt et al. 2009). In the
model, invader phenotypes eventually settled on an equi-
librium (fig. 2a-2d) that was determined by a balance of
maximizing predation and mitigating stabilizing selection.
Once invaders at the front attained that phenotype, spread
leveled off at a maximum speed (fig. 2e-2h). In nature,
evolution at an invasion front may cease before the con-
clusion of spread as a result of any number of factors,
including fitness trade-offs, exhaustion of genetic varia-
tion, or constraints due to genetic or phenotypic corre-
lations. These results about invader evolution and increas-
ing spread rates also apply to other traits affecting
population growth (Holt et al. 2005; Phillips et al. 2010),
such as fecundity or juvenile survival (Siemann and Rogers
2001; Duckworth and Badyaev 2007; Phillips 2009).
Invader evolution and transient spread acceleration
were synonymous in my model, but in general that need
not be true. Using a similar model, Garcia-Ramos and
Rodriguez (2002) also found that an invader’s phenotype
mean formed a traveling wave spurred by evolution at the
invasion front, yet spread proceeded at a constant speed
and in some cases decelerated. The reason for the differ-
ence between our models is that Garcia-Ramos and Rod-
riguez (2002) defined the trait to be a spatially varying
stabilizing selection optimum; thus, adaptation was a pre-
requisite for spread rather than an accelerant. This may

often be the case for invasions along spatial gradients or
during the expansion of established ranges (e.g., Butin et
al. 2005).

Of course, invader evolution is not the only phenom-
enon that can accelerate spread. Other factors such as Allee
effects (Lewis and Kareiva 1993) and long-distance dis-
persal (Shigesada et al. 1995; Kot et al. 1996) are usually
thought of as the most parsimonious explanations for in-
creasing spread rates (Hastings et al. 2005), including for
two of the species in figure 8 (Veit and Lewis 1996; Gam-
mon and Maurer 2002). Rather than competing with these
alternative explanations by attempting to attribute accel-
erating spread in the examples from figure 8 to invader
evolution, the point of this exercise was to determine
whether spread acceleration to the extent observed in na-
ture could ever possibly be accounted for by invader evo-
lution. Indeed, figure 8 shows that moderate heritabilities
and realistic selection strengths are capable of accelerating
spread to the extent observed for species with the popu-
lation growth rates and generation times of those species,
suggesting that invader evolution should be taken as se-
riously as classical explanations for accelerating spread in
analyses of empirical spread data.

Evolutionarily Labile Native

One of the most important factors that limits the impact
of native evolution on invader spread is time. Most es-
sentially, there must be enough time for native evolution
to occur before spread has concluded (i.e., T< t,,,.4). In
a compilation of published results, Strauss et al. (2006)
showed that it can take anywhere from a few years to a
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Figure 6: Requirements for native dispersal relative to invader dis-
persal (03/07) for slowing spread (a) and changing native phenotypes
at the invasion front (b). Different lines correspond to different ad-
vective dispersal biases (solid line,6 = 0.6; dotted line, 6 = 0; dashed
line, & = —0.6). The native species is evolutionarily labile (V, y =
(1/2)V; n)> whereas the invader is not (V, ;, = 0). Solutions were
obtained numerically on a spatial domain of length 4X over time 4T
to allow ample time for natives to mount an evolutionary response,
and all other parameter values are as in table 1, except a = 0.01.

century or more for natives to display adaptive, genetically
based responses to invaders. In my own compilation of
30 invasions, I gathered published data to determine how
long it typically takes for spatial spread to run its course
(app. F). Spread can proceed for anywhere from a few
months to centuries, meaning that the duration of spread
is as long and as variable as the elapsed time before natives
evolve (i.e., T~ t,,..4)- Thus, in some cases natives prob-
ably mount evolutionary responses before spread has con-
cluded, and in other cases they probably do not. For native
species who do respond before the conclusion of spread,
there must also be enough time for adaptive genetic ma-
terial to reach the invasion front if impacts on spread are
to occur. What will determine whether the amount of time
T — t,reaa Detween native response and the conclusion of
spread is sufficient for impacts on spread is the time it
takes for invader-adapted native genes to spread toward
the invasion front.

The most general way that invader-adapted native genes
can catch up to the invasion front is if native dispersal is
more diffuse than invader dispersal. One place where this

Interaction Evolution and Spatial Spread E47

is possible is the marine realm, where mean dispersal dis-
tances varied by several orders of magnitude in a survey
of 90 species distributed across different taxonomic groups
(Kinlan and Gaines 2003). Another generalization that
stands out in that study is that in many cases primary
consumers have mean dispersal distances that are two to
four orders of magnitude greater than those of the pro-
ducers on which they feed (Kinlan and Gaines 2003). Na-
tive primary consumers who display an evolutionary re-
sponse to invasive producers might therefore be strong
candidates to impact spread through phenotypic evolution
(per fig. 6).

Another factor that affects whether invader-adapted na-
tive genes have enough time to catch up to the invasion
front is net advective dispersal bias of the native relative
to the invader (figs. 5, 6). Such a bias can occur if one
species advects and the other does not (e.g., wind polli-
nation) or if both advect but at different rates (e.g., pelagic
larvae spending different amounts of time in the plank-
tonic stage). One relevant invasion in an advection-dom-
inated system is that of the Asian shore crab Hemigrapsus

(a)

Invader

Invasion Front Phenotype

Front Position (X)

(4
6" Vas=0,Van=05

0 0.5 1 1.5 2
Time (7T)

Figure 7: Different effects of native evolution (V, , = (1/2)V,, ) on
phenotypes at the invasion front (a) and invasion front position (b)
when invaders are either evolutionarily labile (solid lines; V, , =
(1/2)V,, ) or static (dashed lines; V,, ; = 0). In 4, invader phenotype
trajectories appear in gray and native phenotype trajectories in black.
The dotted line in b shows the front position when there is no
evolution in either species. All parameters are as in table 1, except
o = 0.01 and o3, = 10°.
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Figure 8: Selection gradient and heritability requirements to achieve relative changes in spread rate from invader evolution consistent with
average year-to-year increases c,,,/c, observed in six invasions. The solid line in each panel shows the combination of |8| and #* that
satisfies equation (15), given parameter values displayed in the panel (for explanation of parameter values, see app. D). In the region above
and to the right of this line, invader evolution would produce even greater spread acceleration. In the region below and to the left of these
lines, invader evolution would lead to less of an increase in spread rate. The dashed, dash-dotted, and dotted lines in each panel indicate
the fiftieth, seventy-fifth, and ninety-fifth percentiles of the absolute values of selection gradients (]3| = 0.15, 0.30, 0.71) from Kingsolver

et al. (2001).

sanguineus off the coast of New England, where the native
mussel Mytillus edulis evolved an increased capacity for
shell thickening (Freeman and Byers 2006). Because the
invader spread north against the dominant advective cur-
rent, crab-adapted mussels from the south would have
been unlikely to influence the genetics of unexposed mus-
sel populations at the invasion front (Byers and Pringle
2006; Freeman and Byers 2006), consistent with results in
figure 6. Impacts of native evolution on spread would seem
more likely were H. sanguineus spreading in the direction
of the dominant advective current. Even this would depend
on the duration of the planktonic stage in each species
though, because 6 is a relative quantity.

Management Implications

Although most evolutionarily labile native species prob-
ably do not satisfy the requirements for impeding invader
spread, natural resource managers may sometimes have
the ability to facilitate gene flow from adapted core pop-
ulations to naive edge populations. For example, seed from
native plant populations displaying adaptation to com-
petition from invasive plants or herbivory by invasive in-
sects could be introduced to uninvaded populations (Leger
2008). Managers can also slow down spread by influencing
invader evolution at the front. One option for achieving

this is targeted culling of the best-adapted invaders at the
front (Sih et al. 2010) with the intention of influencing
the direction or strength of selection in a way that prevents
spread acceleration. Even if targeting certain individuals
is not feasible, culling could also retard invader evolution
at the invasion front by reducing adaptive genetic variation
there.

Model Limitations

One of the most tenuous assumptions in the model is that
genetic variation is fixed and unchanging. It is unclear
how relaxing this assumption might affect the results, be-
cause some factors tend to decrease additive genetic var-
iation and retard adaptation (inbreeding and genetic drift;
Bulmer 1980) whereas others could supplement genetic
variation and drive adaptation (multiple introductions:
Kolbe et al. 2004; gene flow: Alleaume-Benharira et al.
2005; mutation accumulation: Butin et al. 2005). Another
simplification is that the ecological model features a single
specialist predator and its lone prey. Even so, in some
instances, strong evolutionary forces can also result be-
tween nonspecialist species (e.g., Motychak et al. 1999).
Finally, only the simple case of a predator-prey interaction
with Lotka-Volterra dynamics is considered. A saturating
functional response would generate a lesser gradient in
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Table 1: Summary of possible impacts of evolution on spread, depending on which species is evolutionarily labile

Invader Native Impact of evolution on spread

Static Static ~ Spread at a constant rate

Labile Static  Accelerating spread due to evolution of invader phenotype at the invasion front

Static Labile  Decelerating spread if exposed and adapted natives contribute genetically to populations at the invasion front
Labile Labile  Invader evolution accelerates spread and attenuates effects of native evolution at the invasion front

prey density immediately behind the invasion front, which
could lead to nominally different results, such as shallower
clines or slightly stronger native gene flow toward the in-
vasion front. Nonetheless, the present formulation is gen-
erally applicable to exploiter-victim interactions, and key
results should apply to all interaction types.
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APPENDIX A

Numerical Implementation of the Model

To obtain numerical solutions of equations (1)—(6), I used
the function pdepe in Matlab (ver. 7.8; MathWorks, Na-
tick, MA), which involves forward integration of the or-
dinary differential equations that result from discretizing
the spatial dimension. Concurrent calculations of equa-
tions (4) and (5) were performed by standard numerical
integration (trapz function in Matlab), and the selection
gradient dm,/dz; was calculated using a finite difference
approximation (Press et al. 2002). The model’s initial con-
ditions were a uniform distribution of natives at their
stable, invader-free equilibrium IQ]IF = K — kyVp\/1)
across 1,000 discrete points in the spatial dimension,
whereas invaders were uniformly distributed at their co-
existence equilibrium fCE across 10 points at one end of
the landscape, where }CE = [k Vo n+ r(d — NCE/K)]/aS
and NCE = (kV;;+ d)/abS. 1 chose to initialize invader
populations at a somewhat high abundance because my
focus here is on spread, which is a process that is defined
to occur after establishment (Williamson 1996). Initial-
izing invaders to be scarce at time t = 0 leads to similar
results using this model. I imposed reflecting boundary

conditions at the boundary points x, x, such that the par-
tial derivatives (9 - /dx) with respect to space equaled 0
for native and invader abundance (N, I) and mean phe-
notypes (zy, z;).

The choice of boundary conditions, length of the spatial
dimension, and length of the time span could all have
impacts on spread, primarily near the far end of the in-
vaded region. To minimize any such impacts, I chose a
sufficiently long spatial dimension and time span and as-
sessed spread rate in the interior of the landscape. Spe-
cifically, I assessed instantaneous spread rate c,,,(f) by re-
cording the farthest position at which the invader
population exceeded I.;/10 at each time step, taking the
differences between those positions per time step length
and smoothing them with a low-pass filter (rectangular
window of width |x, — x,|/10, using the filtfilt function in
Matlab). Numerical estimation of the wave speed occurs
at the very front of the wave (location x — cf) where in-
vader density is low, so dynamics behind the crest of the
wave should have virtually no impact on behavior at the
front or on numerical estimation of the wave speed.

APPENDIX B

Approximation of Evolutionary Dynamics
at the Invasion Front

Rather than thinking about phenotype dynamics in terms
of mean phenotype z, for the purpose of calculating as-
ymptotic spread rate, it is more convenient mathematically
to think in terms of the sum of phenotype values p across
all n members of a population. For example, if z were
mean body mass in a population, then p would be the
sum of body masses of all members of the population;
that is, p = >" z. The relationship of these variables,

i=1

) (B)

N
I

RS

can be used with equation (1) and the equation governing
the dynamics of p in time and space (shown below) to
derive equation (2) (Pease et al. 1989).

Given mean Malthusian fitness m and additive genetic
variance V), the local dynamics of p are embodied math-
ematically by
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(B2)

which is consistent with equation (B1) and the last terms
on the right-hand sides of equations (1) and (2). Biolog-
ically, the first term on the right-hand side of equation
(B2) accounts for changes in population size » that in-
crease or decrease p without changing the mean phenotype
z, and the second term represents evolution by natural
selection that increases or decreases the mean phenotype
z.

In the model for p, the sum of phenotypes p should
redistribute itself according to a diffusion process with
mean squared displacement per time o7, irrespective of
individuals’ phenotypes, as is the case in equations (1) and
(2). Adding a diffusion term to equation (B2) then results
in

ap a’dp am
—=——4+mp+ V,.—n, B3
ot - 2axr TP Mgz (B3)
which, combined with
on  ¢*d’n  _
— =t mn, (B4)
ot 2 dx

describes the dynamics of p and 7 in time and space (Na-
gylaki 1975).

If there is little genetic variance or selection pressure
(i.e., small V, and 9m/dz) at the invasion front of a species
spreading according to equations (B3) and (B4), then cal-
culation of the spread rate of p and n is straightforward
(Murray 2002): ¢ = (2ma?)". In this scenario with no
evolution, the sum of phenotype values p simply increases
at the invasion front as the number of individuals there
increases. However, if there is appreciable genetic variance
and selection pressure, the term V,(dm/dz)n ensures that
some additional p—beyond increases in p owing to pop-
ulation growth—will accrue at the front as a result of
evolution. These changes in p due to evolution in turn
change z at the invasion front at rate V(0m/dz), as in
equation (13). The accuracy of this approximation and its
impact on spatial spread are corroborated by numerical
solutions of the model (fig. 2).

APPENDIX C

Derivation of the Formula for Change in Spread Rate

Taking the result that mean phenotype dynamics at the
invasion front are described by (9/06)z(t, x — cf) =
V.. (0m,/0z,) from appendix B and making the simplifying
assumption that additive genetic variance V ; and the se-
lection gradient (911,/0z,) are constants, we obtain a related
solution to equation (13) of

_ - om
z(t, x — ct) = z(0) + \(\,,—_[t. (C1)
0z,
Because linear selection gradients encapsulate how phe-
notype changes affect fitness over time, it follows from
linearizing fitness about the mean phenotype that

my(t) = m,(0) + i—? [2(6, x — ct) — z(0).  (C2)

With this formula describing how Malthusian fitness
changes at the invasion front over time, it follows that the
relative change in spread rate over time due to invader
evolution is

¢ \2m0)o}

2
_ \/H;(a_ﬂ%)v .
B m(0)\ oz, ™"

More readily estimable parameters can be applied to equa-
tion (C3) by substituting the strength of selection
dm,/dz, with the standardized selection gradient § =
(01,/0z)\V;, ,G, where G is generation time. The change
in spread rate over ¢ years due to invader evolution is then
simplified to

(C3)

el _ [}, B

c ()G (€4

where narrow-sense heritability h* = V, ,/V, ;.

Assuming that evolutionary change in the native species
is negligible at the invasion front, 71,(0) will depend only
on properties of the invader. In that case, the derivation
in this appendix is generally applicable to any spreading
invader with a quantitative trait that affects Malthusian
fitness and is under selection at the invasion front.

APPENDIX D

Calculation of Observed Year-to-Year
Increases in Spread Rate

Calculating year-to-year increases in spread rate for the
North American cheatgrass, house finch, and starling in-
vasions assumed that spread accelerated at a constant rate.
Data for these invasions were time series of range radii
over the course of each invasion (Wing 1943; Mack 1981;
Veit and Lewis 1996). First, I performed a linear regression
of the log of each time series. Where m is the slope and
b the intercept of this regression, the instantaneous spread
rate is me’e™. The change in spread rate from one year

to the next is then e”, which is 1.0713 for cheatgrass,
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1.0788 for house finches, and 1.1030 for starlings. Mundt
et al. (2009) performed the same type of regression on
spatial spread data for West Nile virus and influenza A
(H5N1), which suggested respective yearly changes in
spread rate of 2.2034 and 5.5622 for those invasions. Cal-
culating year-to-year increase in spread rate for the cane
toad invasion of Australia made use of the initial spread
rate (10 km year™'), a more recent spread rate (55 km
year '), and the time since introduction to Australia (73
years; Urban et al. 2008). Assuming that spread rate in-
creases by the same percent each year, the year-to-year
increase in cane toad spread rate was (55/10)" =
1.0236.

Interaction Evolution and Spatial Spread E51

Estimates of demographic parameters displayed in fig-
ure 8 also come from diverse sources. Population growth
rate m(0) was calculated explicitly for starlings by van den
Bosch et al. (1992). For cane toads, cheatgrass, influenza,
and West Nile virus, one or more estimates of R, (Lampo
and De Leo 1998; Cruz-Pacheco et al. 2005; Ward et al.
2009; Griffith 2010) were used to calculate population
growth rate as m(0) = In{[(I/N) Z,il R, ;J/G}. Mean an-
nual population increase in house finches was reported by
Robbins et al. (1986), the log of which is equal to m(0).
The procedures I used to obtain values of generation time
G are discussed in appendix F, available online.

APPENDIX E

Parameter and Variable Definitions

Table E1: Base parameter and variable definitions

Symbol Definition Units  Baseline value
a Attack rate ! a

b Conversion efficiency N .5
d Predator death rate £ .5
I(t x) Invasive predator abundance I }CE
K Prey carrying capacity N 1,000
k; Stabilizing selection strength 2! .001
N(t x) Native prey abundance N Z:IIF
r Prey growth rate [ 5

t Time t
Vi Additive genetic variance z? 0-1
Vo Phenotypic variance z? 1

* Space x
z,x( x)  Mean phenotype z 0,0
o Species interaction selection strength z? .02
6 Advective dispersal bias xt™! 0
o} Mean squared displacement per time X 1
0, n Stabilizing selection optimum phenotype z 4,0

Table E2: Composite parameter definitions

Symbol Definition

m Malthusian fitness

S Effect of phenotype evolution on attack rate

a Attack rate that maximizes equilibrium predator density

Nw Invader-free native prey equilibrium

jCE, NCE Coexistence equilibria

G Covol Spread rate, with and without evolution

Q, P, Parameters for trajectory of phenotype evolution

D Maximum phenotype distance between invader and native for invader establishment to be possible
T Time required for native to evolve phenotype capable of repelling invader establishment
X How far invasion spreads in time T

w Narrow-sense heritability

63 Standardized selection gradient
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